

FMI intelligent traffic road weather services 5G test track

Timo Sukuvaara @fmi.fi

Intelligent traffic

- Road weather services exploiting Intelligent Traffic Systems (ITS)
 - 5G enabled road weather services
 - Road weather services tailored for autonomous vehicles
 - Digital Twin modelling of test track
 - Energy efficiency, green tech
 - Weather radar-assisted road weather
- Sod5G Vehicle winter testing track for combined intelligent traffic and road weather services development and testing
 - Testing and demonstration platform for all intelligent traffic research projects
 - Permanent measurement infrastructure

Test track permanent infrastructure

- Versatile vehicle winter testing track, 1.7 km main track (gravel/concrete)
- Monitoring hub for on-site control & configuration of measurements
- Non-standalone 5G in 3.5 GHz with narrowband IoT, part of 5GTN
- ITS-G5-test network (2 interactive RWS + mobile devices)

 Road weather obs infrastructure (2 RWS + Vaisala GroundCast surface-embedded sensor, mobile vehicular measurements with Vaisala MD30,

5G-SAFE[†]

Teconer RCM 411/511 and Luft MARWIS)

- LoraWAN IoT weather sensor network
- Autonomous miniature vehicle as local UAV
- Luosto weather radar, supplying Nowcasting data
- Instrument pipelines in concrete section, for under-surface sensors
- Digital Twin-replica of the track with Sitowise Unity engine

Autonomous miniature vehicle

- Miniature vehicle
 - Carries all the monitoring instrumentation present in passenger UAVs
 - Provides all the sensor data composed by UAV and can react to services linearly with autonomous passenger UAVs
- Current equipment
 - Pixhawk 4 Flight Controller, with internal IMU and compass
 - 5G-capable Flight Controller companion computer
 - 2x uBlox ZED-F9P RTK Moving Base antennae
 - Velodyne VLP-16 "Puck" 360° LiDAR
 - Teconer RCM411 Road Condition Monitor/ Vaisala MD30
 - Options; vehicle radar, camera
- Current capabilities
 - Route-based driving with several routes in the test track
 - Alternative route manoeuvre as launched event or by external warning
 - Dodging maneuver as launched event or by external warning
 - Accepting different driving modes
 - Enhanced road weather services tailored for autonomous vehicles

Driving mode	Driving specifics	Road weather and driving conditions	Effect to sensors
0	Must stop	Not defined	Unknown location or other error
1	No need to adjust speed nor driving	Fair weather. Good visibility and dry surface	-
2	Anticipate braking events by lowering speed, increase safety distance	Minor rain or snow / light snowdrift / light fog. Fairly good visibility and friction.	Lidar not detecting completely, camera detecting poorly
3	Halve the speed, increase safety distance	Moderate rain or snow / moderate snowdrift / light or dense fog. Reduced visibility or friction.	Lidar not detecting completely, camera not detecting
4	Minimum speed, prepare to stop	Heavy rain or snow / high snowdrift / freezing rain / dense fog. Reduced visibility or friction.	Lidar not detecting completely, camera not detecting, radar not detecting completely, ice and snow on the sensors
5	Must stop	Heavy rain or snow / moderate or long-	Lidar and camera not detecting, radar

Interactive vehicular weather and safety services 5G-SAFE (2016-2018); Road Weather Forecast Traffic Safety Alert Weather alert Vehicle See-through 5G-SAFE-Plus (2020-2023); 5G-enabled weather, road safety and maintenance services (with Vaisala) Obstacle detection and warning with hybrid communication for GAV (with VTT & Unikie) Ultra-low delay services for CAV, including pedestrian warning (VTT) Cyber-security issues (Wedge Networks) Digital Twin model of the test track

Digital Twin of the test track

- Environment
 - Unity real-time graphics, created by Sitowise
 - allows complex lighting, physics, interactive environments, and high-fidelity audiovisual quality across multiple platforms
 - The 3D environment combines multiple information sources and formats; initial data models, combination models, presentation models, standardized 3D-formats, XML bidirectional data, HTTP, MQTT, sockets, websockets, IoT devices and sensors
- Purpose
 - Visualization of test scenarios, in varying weather conditions
 - Monitoring vehicle tests via Digital Twin interface in the test track hub
 - Planning the instrument configuration, designing new instrumentation implementations

Future; creating virtual fleets alongside the physical ones

Road weather service development in public roads

Arctic Trucks/SafeTrucks—up to 6 mine trucks collecting & consuming road weather service data

- Currently 3 friction devices and one camera monitoring system equipped
- SafeTrucks-project functionalities installed during 2024

Roadside infrastructure providing supplemental data for road weather services

Interactive road weather station in Petäjämaa with advanced measurements (Temperature, wind, surface temp & state, friction, visibility, road frost) and communication systems (4G, ITS-G5, WiFi)

Surface-embedded sensors in selected spots analysing road endurance

Surface-embedded sensors, Perco-stations monitoring underground road layers (University of Oulu, Material- and machine technics)

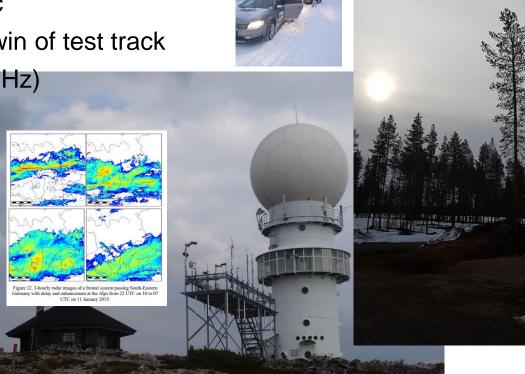
On-board external sensors for ad-hoc measurements

Friction instruments of Vaisala, Teconer and Luft

Camera-based weather and road-condition analysis by Vaisala and Destia

Future work:

- Road weather services tailored for autonomous vehicles, including weather radar Nowcasting
- High-speed uploading of autonomous vehicle sensor data, hierarchical data analysis methods
- More dense and versatile road weather sensor loT network
- Vehicle-specific tailored road weather and safety services for the heavy traffic
- More configurable Digital Twin of test track


mmWave 5G network (28 GHz)

WiFi6/7 network hotspot(s)

Drone-assisted 5G

